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Abstract—We present a new color photometric stereo (CPS) method that recovers high quality, detailed 3D face geometry in a single

shot. Our system uses three uncalibrated near point lights of different colors and a single camera. For robust self-calibration of the light

sources, we use 3D morphable model (3DMM) [1] and semantic segmentation of facial parts. For reconstruction, we address the

inherent spectral ambiguity in color photometric stereo by incorporating albedo consensus, albedo similarity, and proxy prior into a

unified framework. In this way, we jointly exploit multiple cues to resolve under-determinedness, without the need for spatial constancy

of albedo. Experiments show that our new approach produces state-of-the-art results from single image with high-fidelity geometry that

includes details such as wrinkles.

Index Terms—Color photometric stereo, 3D face reconstruction, uncalibrated near point lights, single shot capture, normal estimation.

✦

1 INTRODUCTION

S
TATE-of-the-art photometric stereo solutions for 3D face re-

construction [2], [3], [4], [5] are capable of producing movie-

quality, photo-realistic results. However, these systems tend to be

bulky and expensive and generally require taking multiple shots.

Even with elaborate time-multiplexing, it is difficult to capture

fine facial geometry movements unless using an ultra-fast speed

camera coupled with high precision synchronized light sources.

The light sources and cameras also require accurate calibration to

avoid distortions in the final reconstruction.

In this paper, we present a novel lightweight one-shot solution

based on uncalibrated color photometric stereo method that simply

uses a camera and three uncalibrated near point light sources

of different color. Our approach eliminates the need of time

multiplexing, and therefore can be used to recover dynamic facial

motions. Compared with distant light sources which require rela-

tively strong power, the use of near point light sources makes the

system more portable by reducing the cost and space requirement.

However, for near-field lighting, one needs to know the relative

positions between light sources and face geometry. Even with light

positions calibrated using special calibration targets (e.g., sphere

and planar light probes), one still require extra depth information

of the captured object. We instead propose a self-calibration

method exploiting the shape prior of human faces encoded in 3D

morphable model (3DMM) [1] and can directly self-calibrate the
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relative positions between light sources and face geometry with a

single image.

For objects with non-gray albedo, color photometric stereo

is inherently under-determined due to spectral inconsistencies

of surface reflectance: albedo is not identical under different

spectra and therefore there are more unknown variables than there

are constraints. We address the spectral ambiguity problem by

proposing albedo similarity and proxy prior, and incorporating

them with albedo consensus into a unified framework. As a result,

our approach does not need to assume spatial constancy of albedo.

We also present a new measure for albedo similarity based on the

albedo norm profile. The proposed albedo similarity and proxy

prior effectively correct distortions caused by incorrect albedo

consensus in prior work. Experiments show that our new approach

can produce state-of-the-art results from single image with high-

fidelity geometry that includes details such as wrinkles.

Our technical contributions are as follow:

• A self-calibration method utilizing 3DMM proxy face for

color photometric stereo with near point lights.

• A per-pixel formulation for solving normal and albedo

from color photometric stereo.

• A framework that incorporates albedo similarity and proxy

prior with albedo consensus to produce accurate 3D recon-

struction.

2 RELATED WORK

Structured light [6], [7] and multi-view stereo [8] have been used

to reconstruct faces. While they can accurately reconstruct coarse

shapes, they are less successful in recovering high frequency

details such as wrinkles. On the other hand, photometric stereo [9]

is capable of recovering high frequency details. Techniques that

combine stereo and photometric stereo exist [5], [10], [11], but

the combination is at the expense of a complicated hardware

setup. Recently, Gotardo et al. [12] achieves high-quality dynamic

face reconstruction with multi-view stereo and constant white
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lights through an inverse rendering framework. However, they still

require careful geometric and photometric calibration as well as

HDR light probe of the surrounding environment.

2.1 Photometric Stereo (PS)

Traditional PS [9] uses 3 or more distant lights (of the same

color) and sequentially creates different directional illumination

by turning on only one light at a time. A sequence of images is

captured, each with a different light source. The surface orientation

map can then be inferred from image intensities using an over-

determined linear system. Normal integration is then applied to

obtain a 2.5D reconstruction. We refer readers to [13], [14] for a

comprehensive review of classical PS methods. The distant light

requirement has since been relaxed; much work has been done

using more practical near point light sources [15], [16], [17], [18],

[19], [20], [21], [22], [23], [24], [25]. Notably, Liu et al. [25] use

an LED ring with a radius of only 30mm centered at camera lens.

Alternative self-calibrating methods [26], [27], [28], [29], [30],

[31] provide simpler and more flexible solutions under various

assumptions [32]. It is also possible to use uncalibrated near point

light sources [33], [34], [35], [36], but they all require sequential

capture.

2.2 Color Photometric Stereo (CPS)

CPS has the key benefit of acquiring only one image and hence

can be directly used to reconstruct dynamic objects. Most existing

approaches use red, green, and blue lights along with a color cam-

era [37], [38], [39]. Hernández et al. [40] apply such a technique

to dynamic cloth reconstruction; they use a planar board with

cloth sample fixed in the center to calibrate the coupled matrix

containing reflectance, camera response, lighting spectrum, and

lighting directions. Vogiatzis and Hernández [41] first construct a

coarse 3D face using structure from motion and then impose the

constant chromaticity constraint for shape refinement. Klaudiny et

al. [42] use a specular sphere to estimate lighting directions.

To ensure constant chromaticity, they apply uniform make-up to

faces. Bringier et al. [43] explicitly calibrate the spectral response

of camera and assume gray color or known uniform color.

To eliminate the need of constant chromaticity, there are

methods [44], [45] that combine spectral and time-multiplexing;

optical flow is then used to align adjacent frames. Jankó et al. [46]

make use of temporal constancy of surface reflectance to eliminate

the need for time-multiplexing, but an image sequence is still

required as input. Gotardo et al. [11] simultaneously solve for

color photometric stereo, optical flow, and stereo matching within

each 3-frame time window, but require 9 color lights. Rahman et

al. [47] arrange complementary color lights on a ring. Their

approach requires using 2 images under complementary illumi-

nations as input. Anderson et al. [48] assume piecewise constant

chromoticity by segmenting a scene into different chromaticities.

To calibrate chromaticities, they also require a stereo camera pair

to obtain coarse geometry.

Fyffe et al. [49] extend the usual 3 color channels to 6 by using

2 RGB cameras and a pair of Dolby dichroic filters. An extension

of their work [50] employ polarized color gradient illumination but

require a complex setup with 2040 LED light sources. Chakrabarti

and Sunkavalli [51] observe that the reflectance and normal

within a uniform color region can be uniquely recovered from

spectrally demultiplexed image by assuming piecewise constant

albedo. Ozawa et al. [52] densely discretize albedo chromaticity

and enforce consensus on albedo norms to reconstruct objects

with spatially-varying albedo. However, most of these approaches

assume directional lighting and require pre-calibrating them. It is

possible to use near light sources [53], but they still require pre-

calibration. In contrast, our technique focuses on face reconstruc-

tion and exploits prior face information to enable self-calibration

of near point lights. We assume unknown light positions and

spatially-varying albedo. The former enables more feasible capture

while the latter fulfils the physical property of real faces.

2.3 Single Image Techniques

There are methods for inferring face geometry from a single

unconstrained image; see [54] for an overview of state-of-the-

art methods. However, they tend to produce less accurate results

compared with multi-view stereo and photometric stereo. Pio-

traschke and Blanz [55] demonstrate the usefulness of semantic

segmentation to improve reconstruction quality. In our work, we

use the 3D morphable model [1] to obtain an initial proxy face for

light source calibration.

Shape-from-shading and deep learning based approaches have

also been adopted to recover details [56], [57], [58], [59], [60],

[61], [62], [63]. Jiang et al. [64] combined local corrective

deformation fields with photometric consistency constraints. Yam-

aguchi et al. [65] use a large corpus of high-fidelity face captures

from the USC Light Stage [10] to learn the mapping from texture

to highly-detailed displacement map. These solutions can provide

visually pleasing results but their accuracy is heavily dependent

on illumination.

3 COLOR PHOTOMETRIC STEREO WITH NEAR

POINT LIGHTS

Traditional color photometric stereo uses 3 distant lights with

different lighting directions and spectrum (usually red, green

and blue) together with an RGB camera to spectrally multiplex

different illumination in a single image. By assuming distant

lights, each surface point is illuminated by three directional lights

with direction lj ∈ R
3 and spectral distribution Ej(λ), where

j = 1, 2, 3 and λ is the wavelength. We denote the normal and

reflectance function at any pixel (x, y) as n(x, y) and R(x, y, λ),
respectively. Let Si(λ) with i = 1, 2, 3 be the spectral response of

each camera color channel. For a Lambertian surface, the image

pixel intensity ci(x, y) can be expressed as

ci(x, y) =
∑

j

l⊤j n(x, y)

∫

Si(λ)R(x, y, λ)Ej(λ)dλ. (1)

We denote A(x, y) ∈ R
3×3 as the albedo matrix whose

element at ith row and jth column is

Ai,j(x, y) =

∫

Si(λ)R(x, y, λ)Ej(λ)dλ. (2)

Each element of A(x, y) thus represents the albedo under one

light-channel pair. Letting c = [c1, c2, c3]
⊤ and L = [l1, l2, l3]

⊤,

we can rewrite Eq. 1 in matrix form as

c(x, y) = A(x, y)L(x, y)n(x, y). (3)

Note that for distant lights, L is identical for all pixels. As

a result, with initial coarse normal n′, one can self-calibrate the

product of A and L by assuming constant albedo or constant chro-

moticity [41]. However, for near point lights, lighting direction is
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spatially-varying. By further taking into account the inverse square

illumination attenuation due to distance, we obtain

lj(x, y) =
pj − v(x, y)

‖pj − v(x, y)‖32
, (4)

where pj is the 3D position of jth light source and v(x, y) is the

corresponding 3D position for pixel at (x, y).

4 NEAR POINT LIGHT SELF-CALIBRATION

The benefits of self-calibration are two-fold: first, it eliminates

the need for a special calibration target (e.g., sphere and planar

light probes) and the laborious procedure usually involved when

calibrating near point lights; second, it can handle unexpected

movements of hardware devices (e.g., light sources), making the

capture process more robust. To the best of our knowledge, our

work is the first to address self-calibration of near point lights

under color photometric stereo. For traditional photometric stereo

with near point lights of same color, numerous self-calibration

methods exist [33], [34], [35], [36], but these methods are not

directly applicable due to more unknowns in color photometric

stereo.

In order to self-calibrate the light source positions, we first

require a coarse proxy mesh, from which we obtain initial rough

estimates for normal n and position v at every pixel (x, y). Unlike

other methods that use multi-view stereo [41] or stereo matching

[48] to obtain the proxy mesh, our approach makes use of the 3D

morphable model (3DMM) [1] and needs only one image as input.

To compensate for the inaccuracies in the proxy mesh, we use

RANSAC followed by hypothesis merging to robustly estimate

light source positions. We provide details of our method in the

following two sections.

Most relevent to our work, Cao et al. [35] also exploit 3DMM

for self-calibration. However, a significant difference with our

work is that they resolve ill-posedness by jointly solving for all

lights and require the albedo of a pixel to be identical under each

light. This assumption no longer holds for color photometric stereo

due to spectral inconsistencies of surface reflectance, as shown in

Eq. 2. In contrast to [35], we propose a RANSAC-based approach

in this paper.

4.1 Proxy Mesh Generation

3DMM is a deformable template for the mesh of a human face.

It consists of Principal Component Analysis (PCA) linear basis

along three dimensions: shape, expression, and albedo. Since we

are concerned with only shape and expression associated with the

proxy mesh, we omit the albedo dimension. 3DMM interprets

the face mesh m ∈ R
3n as a linear combination of shape and

expression bases:

m = as + ae +
∑

i

αib
s
i +

∑

i

βib
e
i , (5)

where as,ae ∈ R
3n are PCA means and bs

i ,b
e
i ∈ R

3n are

ith PCA bases of shape and expression, respectively. n is the

number of mesh vertices, and αi, βi are ith coefficients for linear

combination of the bases. We adopt the Basel Face Model 2017 [1]

for 3DMM, and use the iterative linear method from [66] to jointly

solve for PCA coefficients and camera parameters (intrinsics and

extrinsics). We then rasterize the generated proxy mesh to recover

initial normal and 3D position for each pixel. While the proxy

mesh resembles a human face with a reasonable pose, its geometry

is usually inaccurate.

p1 v(a1)l1(a1)
n(a1)

v(a2)

E
r
(a1,a2)

(a) (b)

p2

p3

Fig. 1. Self-calibration of near point light positions using a proxy face.
(a) Parameters involved in estimating p1. (b) Regions (white) on the
face used for RANSAC pixel sampling.

4.2 Estimation of Light Source Positions

As with [51], [52], we assume that there is no crosstalk between

light sources and camera channels, i.e., the spectrum of each light

source can only be observed in its corresponding camera channel.

As a result, the albedo matrix A(x, y) is diagonal. For simplicity,

let ρ(x, y) = [A1,1(x, y),A2,2(x, y),A3,3(x, y)]
⊤, Eq. 3 then

becomes

c(x, y) = ρ(x, y)⊙ L(x, y)n(x, y), (6)

where ⊙ is the Hadamard product operator. For two pixels

(x1, y1), (x2, y2) with equal albedo in the ith channel, i.e.,

ρi(x1, y1) = ρi(x2, y2), we have

ci(x1, y1)

Li(x1, y1)n(x1, y1)
=

ci(x2, y2)

Li(x2, y2)n(x2, y2)
, (7)

where Li is the ith row of L, representing the lighting direction

of ith light source. Substituting Eq. 4 into Eq. 7 and moving all

variables to the left hand side, we obtain

ci(x1, y1) ‖pi − v(x1, y1)‖
3
2

(pi − v(x1, y1))n(x1, y1)

−
ci(x2, y2) ‖pi − v(x2, y2)‖

3
2

(pi − v(x2, y2))n(x2, y2)
= 0.

(8)

Once n and v are extracted from proxy mesh, we can now

recover pi (in the same coordinate system as proxy mesh), which

has 3 unknowns. We require at least 3 constraints, which means a

minimum of 4 pixels with equal albedo in the ith channel. Since

there is no correlation between different lights or channels in Eq. 8,

we can estimate the position of each light independently. However,

since the albedo is unknown, we cannot deterministically locate

pixels with equal albedo. Our solution is to employ RANSAC

to randomly sample quadruplets of pixels. Since we only require

each sampled quadruplet to have equal albedo in one channel,

there is still a high probability that at least one sampling provides

a qualified quadruplet.

Notice that in Eq. 8, the numerators have a higher order of

distance between light source and surface point than those in

the denominators. This biases the solution towards closer light

Authorized licensed use limited to: Louisiana State University. Downloaded on March 10,2021 at 01:19:27 UTC from IEEE Xplore.  Restrictions apply. 



positions. We instead use an unbiased form of Eq. 8 to measure

the residual between two pixels a1, a2:

Er(a1, a2) =
ci(a1)(pi − v(a2))n(a2) ‖pi − v(a1)‖2

‖pi − v(a2)‖
2
2

−
ci(a2)(pi − v(a1))n(a1) ‖pi − v(a2)‖2

‖pi − v(a1)‖
2
2

.

(9)

For each quadruplet Q (an example is shown in Fig. 1(a)), a

hypothesis of the light position is computed by solving

min
pi

∑

ak∈Q

∑

al∈Q−ak

(Er(ak, al))
2, (10)

which is a squared sum of residuals between each pair of pixels in

a quadruplet. We use the Levenberg-Marquardt algorithm to solve

the nonlinear optimization.

In voting for a hypothesis, a pixel aw is considered an inlier

if the squared sum of residuals between it and the pixels in Q
satisfies

∑

ak∈Q

(Er(ak, aw))
2 < τ2, (11)

where τ is a threshold and set as 0.01 in our experiments.

Instead of using all pixels for sampling and voting, we only

use the pixels on left cheek, right cheek, and forehead, as shown in

Fig. 1(b). This is to avoid potential highly non-Lambertian regions

such as facial hair and shadows. The segmentation of these regions

only needs to be done once on a 3DMM mean face, which can then

be projected to different face images [35].

Unlike standard RANSAC which chooses the hypothesis with

the most number of inliers as the final estimate, we perform an

additional filtering and merging process on all the hypotheses.

The reason is that the 3DMM-based proxy mesh is inaccurate

even as low-frequency geometry. As a result, the initial normals

deviate from true normals at most pixels, making consensus

less concentrated and potentially drifting away from the correct

hypothesis. Instead, we take a set of hypotheses into account to

produce a more robust estimate.

In the filtering step, we determine a plausible region for

hypotheses and ignore all hypotheses outside this region. We first

use the four-point algorithm in [41] to produce the calibration

matrix, which is the product of dominant albedo and directional

lighting directions. We then factor out the dominant albedo and

extract lighting direction l′i for each light by normalizing each row

of the calibration matrix. Hypothesis p′
i (for the ith light source

position) is dropped if it does not satisfy

arccos
(p′

i − vc)
⊤l′i

‖p′
i − vc‖2

< η, (12)

where vc is the mean 3D position of all pixels.

Eq. 12 forms a cone region with half-angle η around l′i; all

hypotheses outside this region are ignored. We use η = 15◦ in our

experiments. Subsequently, we merge the remaining hypotheses

Pi with weighted linear combination to obtain final estimate for a

light source position:

pi =

∑

p
′

i∈Pi
w(p′

i)p
′
i

∑

p
′

i∈Pi
w(p′

i)
, (13)

where w(p′
i) is the number of inliers for hypothesis p′

i.

(a) (b)

(c) (d) (e)

GT

Estimate

Fig. 2. Effect of consensus term, illustrated on a face with ground truth.
(a) Albedo distribution. (b) Two pixels that contribute to a consensus.
The close-ups show the magnitude of negative consensus term at the
two pixels in chromaticity space. The skin pixel is accurately estimated
while the lip pixel is not. (c, d) Distribution of ground truth pixels that
form consensus with a given pixel (indicated as blue and red dots,
respectively). (e) Normal error map when using only the consensus
term.

5 FACE RECONSTRUCTION

Once the light source positions have been determined, we can

obtain per-pixel lighting directions L(x, y) using light positions

and proxy face. We then set out to estimate per-pixel photometric

normal. With the albedo unknown, this problem is pixel-wise

underdetermined (from Eq. 6). This is because there are 5 degrees

of freedom (3 for albedo and 2 for normal) but only 3 constraints.

It has been shown [51], [52] that 3 pixels with equal albedo and

linearly independent normals can uniquely determine the albedo

and normals at these pixels. To exploit this property, Chakrabarti

and Sunkavalli [51] modeled the albedo as being piece-wise

constant and used a polynomial model for surface depth. However,

their method tends to produce overly-smoothed results. On the

other hand, Ozawa et al. [52] developed an iterative voting scheme

based on consensus of albedo norms under albedo chromaticity

candidates (see Sec. 5.1) to simultaneously classify pixels into

different albedos and compute their normals. Since their method

assumes no spatial constancy on albedo, high-frequency details

can be recovered. In the extreme case where all pixels share the

same albedo, the correct albedo chromaticity can be estimated

by finding the one that produces the strongest consensus on the

albedo norm. However, for a multi-colored surface, their method

may produce albedo consensus that leads to incorrect estimation

for some pixels. This is because a pixel can be interpreted by

any albedo chromaticity and corresponding albedo norm. There

may exist situations where, under consensus albedo chromaticity,

a pixel with a different albedo has a similar albedo norm with

consensus. For human faces, the albedo distribution tends to

spread out instead of being of a single albedo, as shown in Fig. 2a.

Consensus usually arrives at a reasonable estimation for major

clusters because the number of inliers tends to be large, which

improves robustness. The skin pixel at the blue dot in Fig. 2(b,

c) shows an example. On the other hand, for minor clusters,

consensus tends to provide unreliable estimation as shown by the
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red dot in Fig. 2(b, d), where the lip pixel can be better interpreted

by an incorrect albedo chromaticity.

By comparison, we propose a pixel-wise formulation which

incorporates albedo consensus, albedo similarity between pixels

as well as proxy mesh for high-quality reconstruction. From Eq. 6,

we can decompose albedo ρ into albedo chromaticity ρ̂ and albedo

norm ρ̃:

c(x, y) = ρ̂(x, y)⊙ L(x, y)(ρ̃(x, y)n(x, y)),

ρ̃(x, y)n(x, y) = L(x, y)−1(c(x, y)⊘ ρ̂(x, y)),
(14)

where ⊘ is the Hadamard division operator. We only need to solve

for albedo chromaticity because albedo norm and normal can then

be trivially computed.

To make the problem more tractable, as with [51], [52], we

discretize albedo chromaticity in the space of positive unit sphere

S2
+ into candidates C = {ρ̂(1), ρ̂(2), ...}. Then, for each pixel ai,

we solve for its albedo chromaticity using

ρ̂(ai) = argmin
ρ̂∈C

Ec(ai, ρ̂) + λsws(ai)Es(ai, ρ̂)

+ λpwp(ai)Ep(ai, ρ̂),
(15)

where Ec is the albedo consensus term (Sec. 5.1), Es the albedo

similarity term (Sec. 5.2), and Ep the proxy prior term (Sec.

5.3). ws(ai) and wp(ai) modulate the influence of similarity

term and proxy term at different pixels. After solving for albedo

chromaticity at each pixel, we can then compute the normal and

use Poisson integration to obtain geometry. Compared with proxy

mesh, our final reconstruction is more accurate for both macro-

(shape, expression) and micro- (wrinkles, etc.) geometries. We

detail each term in the following three sections.

5.1 Albedo Consensus

Albedo consensus measures the number of pixels that have similar

albedo norm under an albedo chromaticity candidate [52]. To

compute the consensus term, for each albedo chromaticity can-

didate ρ̂
(j)

, we find the corresponding albedo norms of all pixels

N (j) = {ρ̃(j)(a1), ρ̃
(j)(a2), ...} and build a histogram with bin

width δb · median(N (j)) [52]. Let B(j,k) be the kth bin under

ρ̂
(j)

, |B(j,k)| its cardinality, and bi,j the index for the bin that

contains the albedo norm of pixel ai under ρ̂
(j)

. We define

Ec(ai, ρ̂
(j)) =

m− |B(j,bi,j)|

m
, (16)

where m is the total number of pixels. However, it should be noted

that pixels of different albedo may also have similar albedo norm

under incorrect albedo chromaticities. We propose using albedo

similarity and proxy prior to handle this problem.

5.2 Albedo Similarity

Directly inferring albedo similarity from image intensity is error-

prone, since the difference in image intensity can be caused by

either albedo or shading or both. Instead, the albedo norms of a

pixel under all albedo chromaticities form an albedo norm profile.

We reason that if two pixels have similar albedo norm profile,

then they are likely to have similar albedos. From Eq. 14, letting

H = [c1L
−1
:1 , c2L

−1
:2 , c3L

−1
:3 ] (where L−1

:i is the ith column of

L−1) and ρ̂
′ = [ 1

ρ̂1
, 1
ρ̂2
, 1
ρ̂3
]T , we have

ρ̃(x, y)n(x, y) = H(x, y)ρ̂′(x, y). (17)

The albedo norm profile of a pixel is controlled by H. Hence,

we measure the similarity between two pixels as

M(a1, a2) = −‖H(a1)−H(a2)‖F , (18)

where ‖.‖F is the Frobenius norm. The albedo similarity term is

then computed as

Es(ai, ρ̂
(j)) =

1

|B(j,bi,j)|

∑

a∈B
(j,bi,j)

−M(ai, a), (19)

which is the mean similarity between a pixel and its same-bin

pixels under the jth albedo chromaticity candidate.

We further multiply a per-pixel weight to the similarity term to

suppress its effect at pixels where the similarity term is large for

all albedo chromaticity candidates. More specifically, we compute

the weight as

ws(ai) = e−(min(Es(ai,:))−min(Es(:,:)))
2/σ2

s . (20)

5.3 Proxy Prior

The proxy albedo chromaticity map can be computed from the

proxy mesh using Eq. 6 and is used to penalize implausible

estimations produced by the consensus term. The proxy term is

expressed as

Ep(ai, ρ̂
j) = 1− ρ̂p(ai)

T ρ̂
(j), (21)

where ρ̂p(ai) is the proxy albedo chromaticity at pixel ai. We

apply this term only to pixels where the consensus term gives

estimations largely deviated from proxy albedo chromaticity. Oth-

erwise, it will bias reconstruction towards the proxy mesh. We

multiply the proxy term with the following per-pixel weight:

wp(ai) = e−(min(Ep(ai,:))/Ep(ai,ρ̂c(ai)))
2/σ2

p , (22)

where ρ̂c(ai) is the estimated albedo chromaticity at pixel ai
using the consensus term alone.

6 EXPERIMENTAL RESULTS

In this section, we first report results on synthetic face im-

ages generated using a high-quality face dataset and synthetic

lighting. We then show results for real data captured using our

setup. To self-calibrate each light, we use 2,000 iterations for

RANSAC. The reconstruction parameters are set as follows:

δb = 0.025, λs = 1.5, λp = 0.5, σs = 0.003, σp = 0.01.

We discretize albedo chromaticity in spherical coordinates as

{0◦, 1◦, . . . , 90◦} × {0◦, 1◦, . . . , 90◦}.

We compare our performance against those of representative

state-of-the-art techniques [41], [51], [52]. VH12 [41] assumes

directional lighting with single albedo chromaticity, and uses the

same proxy face as our method for self-calibration. Since CK16

[51] requires directional lighting directions as input, we compute

approximated lighting directions as the rays from face center to

ground truth light positions. OS18 [52] originally assumes direc-

tional lighting, but we adapted it to work for near point lighting

by simply using per-pixel lighting directions during computation.

The per-pixel lighting directions are obtained using our estimated

light positions and proxy face, which are the same as with our

method. Notice that only VH12 [41] and our method work under

uncalibrated light sources while the other two methods require

additional calibration information. After obtaining normal map,

we use Poisson integration [67] to get geometry for both our

method and comparison methods.
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6.1 Experiments Using Synthetic Data

To evaluate our method objectively, we apply it to synthetic

input images with known ground truth. The synthetic images

are generated by rendering high-quality face data from the USC

Light Stage [5], [68] under near point lighting and orthographic

projection, with resolution of 2048× 1536. (Note that while real

cameras are not based on orthographic projection, we use it in our

simulations to exclude the influence of perspective and focus.)

The synthetic lights are distributed with equal azimuth angles

between neighboring lights, and at the same elevation angle. The

distance between each light and the face center is identical. During

rendering, we retain self-shadows on the face while ignoring other

shadowing effects on the background. We also avoid saturation by

scaling each image so that the maximum pixel intensity is 255.

We first report our system’s performance under different light

distances, elevation angles, anisotropy, and crosstalk using a single

face data from [5]. Then, we use the face dataset ICT-3DRFE [68]

to evaluate our method for different gender, skin appearance, and

expression. We also compare with competing techniques in each

analysis.

6.1.1 Light Distance

In this experiment, we vary the distance between the light sources

and face mesh while fixing the elevation angle at 65◦. The distance

is specified in terms of vertical span of the face; it ranges from 0.5

to 10 with increments of 0.5. The rendered images for the first 8

distances are shown in Fig. 3a.

Fig. 3b compares the calibration errors for vanilla RANSAC

and our method. We first transform the calibration results to

the same coordinate system as the ground truth light positions

before computing errors. We compute the relative position error as

Euclidean position error normalized by light source distance. The

angular error is computed with regard to the face center. We can

see that vanilla RANSAC is less accurate with large fluctuations

in error over distance. By comparison, our calibration results are

more accurate and robust to changing light source distance, with

the relative position error around 0.1 and the angular error around

5◦ for most distances.

We also compare the reconstruction accuracy of our method

using our estimated light positions with VH12 [41] in Fig. 3c.

We can see that our method consistently performs better, even at

distance 10 (where lighting is almost directional). There is con-

siderable shape deformation for [41] across the different distances

as shown in Fig. 4, while our method produces reasonable shapes

starting from distance 1.5. At very close distances such as 0.5

and 1, both methods do not perform well due to significant self-

shadowing.

Fig. 3c also shows comparisons with using ground truth light

positions and mean albedo chromaticity (which are the conditions

that should result in the best accuracy under the single chromatic-

ity assumption). In this case, our method using ground truth light

positions out-performs the others by a significant margin under

almost all distances; this shows the importance of spatially-varying

albedo chromaticity. The degraded accuracy at distance 0.5 is due

to significant self-shadowing.

6.1.2 Light Elevation Angle

The elevation angle of light sources have a direct impact on

light source baseline. A large elevation angle results in a small

light source baseline, which enables the equipment to be more

(a)

(b)

(c)

Fig. 3. Effect of changing light source distances. (a) Rendered images
under the first 8 distances (distance increases from left to right and
from top to bottom). Comparisons on (b) self-calibration and (c) re-
constructed normal errors at different light source distances, including
against VH12 [41].

VH12

Ours

Relative Distance

0.5 1 1.5 2.5 10

GT

15.2° 13.3° 8.16° 7.79° 8.00°

21.2° 14.3° 13.2° 9.53° 9.10°

Fig. 4. Comparison of reconstructed geometry with VH12 [41] at different
light source distances. The colored numbers are the mean normal
errors.

portable. However, the angular difference between light sources

decreases as the elevation angle increases, which in turn makes

reconstruction less robust. In the extreme case where the elevation

angle is 90◦, the three light sources degenerate into a single

light source, with their spectra combined. On the other hand,

small elevation angles results in more self-shadowing, which also

negatively impacts reconstruction.

We fix the distance at 2.0 and vary the elevation angle from

85◦ to 30◦ with a decrement of 5◦. At the elevation angle of 30◦,

about 30% of facial pixels are in shadow for green and blue lights.

Fig. 6 shows the mean normal error of our method against [41],

[51], [52]. It can be seen that our method consistently performs the

best under all elevation angles. In addition, all methods display a

trend to perform worse at two ends of elevation angles, although

[51] is less affected by severe self-shadowing at small elevation

angle. While [52] produces smaller errors than [41], [51] under

medium elevation angles, its accuracy drastically degrades for
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Fig. 5. Experimental results for different crosstalk parameters Enondiag, Snondiag. (a) Mean normal errors (in degrees), compared with VH12 [41],
CK16 [51], and OS18 [52]. (b) Apparent albedo maps and albedo/albedo chromaticity distributions for five representative examples. The albedo
values are rescaled so that most pixels are within [0, 1]. (Albedo values at pixels near shadows can be very large; they are not used for rescaling.)

Fig. 6. Mean normal errors (in degrees) under different light elevation
angles, compared with VH12 [41], CK16 [51], and OS18 [52].

small elevation angles due to self-shadowing. This highlights the

importance of our proposed albedo similarity and proxy prior in

correcting errors led by albedo consensus.

6.1.3 Light Anisotropy

Unlike the ideal point light model, real LEDs exhibit anistropic

intensity patterns. To analyze its effect on our method, we further

render images using an anisotropic point light model [24]:

ci(x, y) = ρi(x, y)(
ni
s · Li(x, y)

‖Li(x, y)‖2
)µ

i

Li(x, y)n(x, y), (23)

where ni
s, µi are the (unit-length) principal direction and

anisotropy parameter of the ith light source. The anisotropy

parameter equals 0 for ideal point light source while a larger value

indicates stronger radial attenuation around the principal direction.

We render the images at distance 2.0 and elevation angle 65◦,

with anisotropy parameter ranging from 0 to 20. With µ = 20, the

half-intensity angle is only about 15◦, revealing very strong radial

attenuation.

As shown in Fig. 7(a), light anisotropy has no noticeable

adverse effect on both our method and comparison methods.

We further compute apparent albedo under different anisotropy

r r r

ggg

μ = 0 μ = 20μ = 10

(a)

(b)

Fig. 7. Experimental results for different anisotropy parameter µ. (a)
Mean normal errors (in degrees), compared with VH12 [41], CK16 [51],
and OS18 [52]. (b) Albedo distribution (left) and albedo chromaticity
distribution (right) for µ = 0, 10, 20.

parameters by using Eq. 6 along with ground truth light position,

normal, and per-pixel 3D position. (Note that the apparent albedo

is not the true albedo, since it incorporates any outlier effect

such that the rendering equation adheres to Eq. 6.) Here, light

anisotropy is entirely incorporated as part of albedo. Fig. 7(b)

shows the albedo/albedo chromaticity distributions for three cases,

where there is only minor difference. This illustrates why light

anisotropy has little influence on the accuracy of all methods and

validates our use of ideal point light model.

6.1.4 Crosstalk

Similar to light anisotropy, the influence of crosstalk can also

be interpreted as modification on albedo/albedo chromaticity dis-

tribution. To simulate crosstalk, due to a lack of hyperspectral

reflectance data, we only consider the wavelengths corresponding
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Fig. 8. Comparison with competing techniques (VH12 [41], CK16 [51], OS18 [52]) using data from the ICT-3DRFE dataset. GT is ground truth. The
mean normal and geometry errors are listed in the odd and even rows, respectively. More results can be found in the supplementary file.

to red, green, and blue when evaluating Eq. 2, which can be

rewritten as:

A(x, y) = Sdiag(r(x, y))E, (24)

where S,E ∈ R
3×3, r(x, y) ∈ R

3×1 and Si,k = Si(λk),
Ek,j = Ej(λk), rk(x, y) = R(x, y, λk). Crosstalk exists when

any non-diagonal element of S, E is non-zero. We set the diagonal

elements to 1 and gradually increase their non-diagonal elements

Snondiag, Enondiag (non-diagonal elements are set as the same) to

simulate increasing crosstalk.

Fig. 5(a) shows the normal errors under different combinations

of S and E, where generally more crosstalk leads to worse

accuracy for all methods. Fig. 5(b) shows the apparent albedo

maps along with albedo/albedo chromaticity distributions for 5

cases. We can see that with more crosstalk, there is stronger

spatial albedo variation, which violates the piecewise constancy

assumption of [51]. Although [41] does not have a no-crosstalk

requirement, it also significantly suffers from the spreading-out of

albedo chromaticity distribution due to crosstalk. Our method is

more robust to this phenomenon because of the incorporation of

albedo similarity and proxy prior.

6.1.5 Evaluation on ICT-3DRFE

We further evaluate our method using the ICT-3DRFE dataset [68],

which contains highly-detailed albedo and geometry for 23 sub-

jects (22 with 15 expressions each, and one with 11 expres-

sions, with a total of 341 face inputs). The dataset has vastly

VH12 CK16 OS18

(a) (b)

C+S C+S+PRANSAC Ours

Fig. 9. Error statistics on ICT-3DRFE dataset. (a) Self-calibration errors.
(b) Reconstruction errors of VH12 [41], CK16 [51], OS18 [52], our
“Consensus + Similarity” and our “Consensus + Similarity + Proxy”.

different skin reflectance as well as face geometry. We rendered

images at light source distance 2.0 and elevation angle 65◦,

with no anisotropy or crosstalk. We also added Gaussian noise

(σnoise = 2/255) to simulate real images.

As shown in Fig. 9a, our self-calibration method significantly

improves over vanilla RANSAC. In Fig. 9b, we compare the ac-

curacy of our face reconstruction method with those of [41], [51],

[52]. For our method, we show results of two variants (“Consensus

+ Similarity” and “Consensus + Similarity + Proxy”) to analyze

the influence of each term. We compute relative geometry error

as depth error of integrated geometry normalized by depth range

of ground truth geometry. Methods using near point light model

outperform those using directional light model in terms of normal
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Fig. 10. Example reconstruction results of CK16 [51], near-field version
of CK16 and our method on data from the ICT-3DRFE dataset.

Fig. 11. Hardware setup of our capture system.

error. Each proposed term improves over using consensus only.

Although [51] handles multi-chromaticity, it performs worse

than [41]. It is likely that its polynomial model for depth is not

suitable for complex geometry. While [41] has lower geometry

error than using consensus only [52], our full method improves

over this metric and yields the best accuracy. Fig. 8 shows

3 comparisons. Our method works reasonably well in the lip

and eyebrow regions, even though they contain non-dominant

albedos (which tend to cause incorrect consensus). Shadows, as

with light anisotropy and crosstalk, can also be explained by

apparent albedo; they result in additional albedo variation (see

the leftmost albedo map in Fig. 5(b)). Since our formulation does

not enforce spatial constancy, it can better handle such variation

compared with [41], [51]. Still, our reconstructions contain errors

at shadowed regions near the nose due to inaccurate proxy mesh

around the nose. Please see the supplementary material for detailed

error statistics and more results.

We have also adapted [51] to work for near point lighting,

and use the per-pixel lighting computed from our estimated light

positions and proxy face as input. In this case, [51] and our

approach use the same illumination model and differ only in

the priors used for reconstruction. The near-field version of [51]

indeed shows a noticeable improvement over the original one

using directional lighting: 10.36 vs. 14.94 degrees for average

normal error and 0.080 vs. 0.091 for average geometry error.

However, The full model of our approach still outperforms by a

noticeable margin, with the average normal error of 6.99 degrees

and average geometry error of 0.063. Fig. 10 shows example

reconstruction results, where we can see that although the near-

field version of [51] contains less low-frequency distortions than

the original one, it still lacks recovery of high-frequency details.

6.2 Experiments Using Real Data

To collect real data, we built a color photometric capture system

as shown in Fig. 11. It consists of 3 LED (red, green, blue) near

point lights and a PointGrey Flea3 FL3-U3-88S2C color camera

(4096×2160). The distance between the light sources and subject

is roughly 70cm. We mounted orthogonal linear polarizers in front

of the light sources and camera to reduce specular reflection.

Fig. 12. Reconstruction results for a video clip of a face with changing
expressions. Each frame is processed independently.

Fig. 13. Failure cases for our method. The first two columns are input
image and proxy face, while the last two columns are two views of our
reconstruction.

To reduce crosstalk, we compute a de-crosstalk matrix from

three images of a white paper, namely, one image for each of

the three lights. (This step is done only once.) Specifically, the

de-crosstalk matrix is computed as

M =





1 med(Igr ⊘ Igg ) med(Ibr ⊘ Ibb )
med(Irg ⊘ Irr ) 1 med(Ibg ⊘ Ibb )
med(Irb ⊘ Irr ) med(Igb ⊘ Igg ) 1





−1

,

(25)

where Igr is the red channel of the image under green light, ⊘ is

Hadamard division operator and med(·) yields the median value.

This matrix is left multiplied with the RGB value of each pixel.

The final mesh consists of about 3,000,000 vertices. The whole

process takes about 12 minutes on a 6-core 3.7GHz CPU with

64GB memory, whereas self-calibration takes 8 minutes and face

reconstruction takes 4 minutes. Same with synthetic experiments,

proxy faces are made available to [41] for self-calibration while

[51], [52] are provided with calibration information.

We captured faces of different people and expressions; Fig. 14

shows results for 3 examples (including different gender and

expressions). Results from competing techniques (VH12 [41],

CK16 [51], and OS18 [52]) feature local and global geometric

distortion as well as over-smoothing. These results also have issues

at the lips, and this is because the albedo at the lips differ from

those at the rest of the face. Notice that our method works well

for exaggerated expressions (such as the second example) even

though the proxy face does not accurately depict the expression.

Please refer to the supplementary material for more results. We

have also compared our self-calibration results using captured

real faces with light source positions calibrated using sphere light

probes. The average angular error and relative position error are

7.26 degrees and 0.137, respectively. The errors are slightly higher

than the performance reported in the synthetic experiment on ICT-
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Fig. 14. Reconstruction results of VH12 [41], CK16 [51], OS18 [52] and our method on real data. More examples are in the supplementary file.

3DRFE dataset, possibly due to the experimental ground truth

being not perfect.

We have also captured a video clip of a face with changing

expressions and reconstructed each frame independently. Fig. 12

shows results for 5 representative frames. The mouth interior was

not reconstructed well due to significant self-shadowing.

Fig. 13 shows two failure cases for our method, which contain

extreme poses. The reason is that the proxy face generated by

3DMM fitting is significantly less accurate under such poses. This

affects our algorithm in two ways: (1) self-calibration of light

sources is less robust due to significant pose misalignment of

proxy face, and (2) highly incorrect proxy normals adversely affect

face reconstruction due to incorrect proxy term.

7 CONCLUSION

We have presented a novel color photometric stereo (CPS) method

with only 3 uncalibrated near point lights. Our method is capable

of reconstructing high-quality face geometry from a single image.

Self-calibration of the near point lights relies on the geometric

prior from the 3DMM proxy face. We apply RANSAC, followed

by hypothesis merging to robustly estimate light positions. We

also propose a per-pixel formulation for reconstruction that incor-

porates albedo consensus, albedo similarity, and proxy prior to

handle the ill-posedness of CPS. Synthetic and real experiments

show that our method outperforms previous CPS methods that

similarly use a single image as input.

In our work, we did not exploit the albedo prior of hu-

man faces; this prior may further improve the accuracy of self-

calibration and face reconstruction. While not trivial, it would also

be interesting to explicitly handle self-shadows. Another possible

future work would be extending our method to general objects by

learning from depth sensor observations.
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