
Content Aware Image Pre-Compensation
Jinwei Ye ,Member, IEEE, Yu Ji,Member, IEEE, Mingyuan Zhou , Student Member, IEEE,

Sing Bing Kang, Fellow, IEEE, and Jingyi Yu,Member, IEEE

Abstract—The goal of image pre-compensation is to process an image such that after being convolved with a known kernel, will appear

close to the sharp reference image. In a practical setting, the pre-compensated image has significantly higher dynamic range than the

latent image. As a result, some form of tonemapping is needed. In this paper, we show how global tonemapping functions affect contrast

and ringing in image pre-compensation.We further enhance contrast and reduce ringing by considering the visual saliency. Specifically,

we prioritize contrast preservation in salient regionswhile toleratingmore blurriness elsewhere. For quantitative analysis, we design new

metrics tomeasure the contrast of an imagewith ringing. Specifically, we set out to find its “equivalent ringing-free” image that matches its

intensity histogramand uses its contrast as themeasure.We illustrate our approach on projector defocus compensation and visual acuity

enhancement. Compared with the state-of-the-art, our approach significantly improves the contrast. We also perform user studies to

demonstrate that our method can effectively improve the viewing experience for userswith impaired vision.

Index Terms—Image deconvolution, pre-compensation, high contrast, ringing-free, non-linear tone mapping, saliency

Ç

1 INTRODUCTION

ALL projectors introduce some form of visual blurring
due to its optics and possibly non-planar projection

surface. One way to reduce this problem is to first character-
ize its blur (defocus) kernel and preprocess the image such
that the resulting projected image is sharp. The preprocess-
ing step is called image pre-compensation.

More generally, image pre-compensation is a long stand-
ing problem in image processing with numerous applica-
tions in computer vision and graphics. Given a sharp
reference image I and the blur kernel or point spread func-
tion (PSF) K, the goal is to find a “pre-compensated” image
J which, after being convolved with K, will appear close to
I. In the projection defocus compensation example above,
by projecting J , the actual perceived image should appear
nearly focused.

Pre-Compensation versus Deblurring. At first glance, image
pre-compensation may resemble image deblurring as both
can be viewed as “deconvolution”. The two problems, how-
ever, are inherently different. In image deblurring, there
always exist some “ground truth” J to produce I under ker-
nel K. The ill-posedness of deblurring rises from the

invertibility ofK, i.e., ifK is not invertible, there exist multi-
ple J that can produce the same I. To resolve this ambigu-
ity, classical Wiener filter [1] uses regularization to enforce
invertibility whereas more advanced solutions add priors
such as gradient sparsity [2], [3], [4], [5], edge sharpness [6],
[7], [8] or new irradiance-based blur model [9] to constrain
the solution.

In image pre-compensation, there usually does not exist
any valid solution J . In projector defocus compensation for
example, the convolution kernel is a low pass filter that
removes the high frequency components of J . J is expected
to preserve sharpness even after being blurred. Therefore, the
problem is ill-posed in that no “ground truth” solution exists.

Dynamic Range Problem. A serious problem in image pre-
compensation is the significant increase in dynamic range.
Assume K is invertible, conceptually J can be directly com-
puted as

J ¼ I �K�1; (1)

where � denotes convolution. Consider a randomly gener-
ated 1D invertible kernel and a 1D image of a step edge [0,
1].1 The resulting J has range ½�2:9; 4:9�, as shown in Fig. 1.
In the projector defocus compensation case, we will need to
use J as the input to the projector and therefore we will
have to first compress the rang (tone map) J to [0, 1].

The simplest tone mapping function is linear range com-
pression. In the simple 1D example above, if we apply linear
tone mapping on J as lðJÞ , the resulting I ¼ lðJÞ �K will
have dynamic range ½0:4; 0:6�, muchnarrower than its original
one ½0; 1�, as shown in Fig. 1. In the projector defocus case, it
will lead to severe contrast loss.More sophisticated tonemap-
ping such as power function slightly broadens the dynamic
range and contrast of I but at the same time introduces ring-
ing. Most previous approaches assume relatively small
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kernelsK and resort to optimization schemes such as steepest
descent [10] andWiener filters [11], [12]. However, these tech-
niques are less effective on larger kernels. By far, only a hand-
ful of techniques address the role of tone mapping functions
in image deconvolution/deblurring [9], [13], [14] while the
analysis in image pre-compensation is largelymissing.

We believe our paper is the first to systematically study
how the tone mapping function affects ringing and contrast
in image pre-compensation. In this work, we focus on global
tone mapping functions. We first show that linear tone map-
ping completely eliminates ringing but incurs severe con-
trast loss. In contrast, non-linear tone mapping functions
such as power curves slightly enhances contrast but intro-
duces ringing. To conduct a quantitative analysis, we design
new metrics to measure the contrast of an image with ring-
ing. Specifically, we set out to find its “equivalent ringing-
free” image that matches the intensity histogram and uses
its contrast as the measure. Our approach hence enables
reliable comparisons between different tone mapping func-
tions as well as effective constructions of specific tone map-
ping functions to achieve a target contrast.

We demonstrate our technique on two important appli-
cations: projector refocusing and visual acuity enhance-
ment. For projector defocusing, we show that our technique
outperforms the state-of-the-art solutions based on steepest
descent [10] and Wiener filters [11], [12] on large kernels.
For visual acuity enhancement, our technique can improve
the visual experience for people with myopia or hyperopia
when not wearing corrective lenses. Specifically, we provide
a simple user interface to trade-off between ringing and
contrast; this interface allows the user to adjust the amount
of ringing for generating the optimal curve. Our user study
shows that our technique is effective and comparable to the
state-of-the-art solutions [15], [16] in both visual quality and
quantitative measures.

This work extends our previous publication [17];
there is significant improvement in algorithm design. Visual
saliency is used to customize the tone mapping function.
More specifically, contrast loss is weighted more heavily in
salient for estimating the optimal tone mapping function.
This results in salient regions having higher contrast and
less ringing while the rest of the image may be compro-
mised by some blurriness. User studies show preference
for results of our technique over those of competing state-
of-the-art techniques.

The remainder of the paper is organized as follows:Wefirst
review relatedwork in Section 2. We define the tonemapping
problem in image pre-compensation in Section 3 and show
how we optimize the tone mapping function in Section 4.
Content-aware pre-compensation is described in Section 5.
Experiments and evaluations are shown in Section 5. We
suggest areas for futurework in Section 6.

2 RELATED WORK

In this section, we briefly review previous state-of-the-art
techniques related to image pre-compensation.

Image Deconvolution. Image pre-compensation is closely
related to the image deconvolution problem because both
involve kernel inversion. Image deconvolution is widely
used in image restoration for removing blur [2], [3], [18]
and/or noise [19], [20]. Classical algorithms include the
Richardson-Lucymethod [21] andWiener deconvolution [1].
Richardson-Lucy [21]models image noise as a Poisson distri-
bution. Wiener deconvolution [1] imposes the Gaussian
assumption for both noise and image gradients in order to
enforce kernel invertibility. Priors such as gradient spar-
sity [2], [3], [4], [5], edge sharpness [6], [7], [8] or irradiance-
based blur model [9] have been used to constrain the decon-
volution problem. More recently, Xu et al.[22] propose a
deep convolutional neural network for image deconvolution.

Image deconvolution has also been used for improving the
visual acuity for users with vision impairment. For example,
Alonso et al. [15], [23] use the classical Wiener deconvolution
to compute the pre-compensated image for display on a com-
puter screen and discuss how contrast loss affects the user
experience. They further improve the viewing experience
through edge enhancement [24]. More recently, Montalto
et al. [25] use constrained total variation to pre-correct images
for observers with visual aberrations. Although these appr-
oaches are able to produce sharper images for vision impaired
viewer, such images suffer from significant contrast loss
(especially when the viewer’s visual aberration is severe). By
comparison, our method balances contrast and ringing in
estimating the pre-compensated image.

Projector Compensation. Projector compensation is an
important application to image pre-compensation and has
been heavily studied to improve projection quality. There
are techniques that use photometric compensation (e.g.,
[26], [27]) or geometric compensation (e.g., [28]). The semi-
nal works of Zhang and Nayar [10] and Brown et al. [11] are

Fig. 1. Effect of simple linear pre-compensation. The PSF can be from a typical projector, with the input image being of LDR (low dynamic range). Top
row: With no pre-compensation, the step edge image is blurred. Bottow row: The pre-compensated image of a step edge under an invertible kernel
incurs a significant increase in dynamic range (HDR, or high dynamic range). Linear tone mapping produces a ringing-free sharp result but signifi-
cantly reduces the scale (contrast) of the step.
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the first to compensate defocus blurs using image pre-
compensation. Brown et al. [11] and Oyamada and Saito [12]
use Wiener filters whereas Grosse et al. [29] use a coded
aperture to improve PSF invertibility. Their techniques
work well for small kernels where the dynamic range of the
pre-compensated image is about the same as the reference
image. Zhang and Nayar [10] bypassed the tone mapping
process through constrained iterative steepest descent. At
each iteration, they clamp the latest estimation to ½0; 1�. For
larger kernels, the optimized results neither guarantee good
contrast or ringing suppression. In this work, we systemati-
cally study the relationship between contrast and ringing in
image pre-compensation and propose to strike a balance by
non-linear tone mapping.

Computational Displays. There are also hardware solutions
for compensating for the visual blurriness, namely through
the use of computational displays/projectors. A comprehen-
sive survey on customized computational devices is pro-
vided in [30]. The systems of [16], [31], [32] are most related
to blur compensation. Pamplona et al. [31] design a special
computational display using multiple LCD layers. Their
method effectively enhance the contrast of pre-compensated
images. However, their device cannot display color images
and the field-of-view is very limited. Huang et al. [16], [32]
develop a multilayer pre-filtering on a ultra-high dynamic
range light field display to enhance contrast. All these solu-
tions use simple tone mapping functions and rely on the dis-
plays themselves to enhance contrast. By comparison, our
approach is a software content-adaptive approach that
improves the visual quality of pre-compensated image
through a global non-linear tonemapping function.

3 TONE MAPPING IN IMAGE PRE-COMPENSATION

We first study how tone mapping affects the dynamic range,
contrast, and ringing in image pre-compensation. The phe-
nomena of significant dynamic range stretch in image decon-
volution has been widely documented in signal processing
[33] and computer graphics/vision literature [10], [15], [16],
[32]. Briefly, the stretch is due tomatrix inversion.

Recall that the convolution kernelK can bewritten in form
of a Toeplitz matrix with block-circulant-with-circulant-block
(BCCB) structure which can be diagonalized by singular

value decomposition (SVD) as K ¼ ULV �, where U and V
are the left and right singular vectors and L is a diagonal
matrix composed of the square roots of eigen values. Let �min

be the minimum eigen value in L. Since the eigen values of
K�1 are the reciprocal of K’s, the maximum in L0 is then
�0max ¼ 1=�min. If �min is close to zero, �0max can be very large,
resulting range expansion in J . This implies that J can be of a
much higher dynamic range (HDR) and therefore cannot be
“physically” implemented, e.g., used as an input to the projec-
tor. The question is then how to map dynamic range of J to
½0; 1� (normalized version of the usual range ½0; 255�).

We first define our notations. Assume the sharp refer-
ence image I has range ½0; 1� and the computed J has
range ½minðJÞ;maxðJÞ�. Given a tone mapping function f :
½minðJÞ;maxðJÞ� 7! ½0; 1�, we map J to Jf as the final pre-
compensated image and denote the resulting convolution
result as If ¼ Jf �K ¼ fðJÞ �K. An ideal f should pro-
duce If � I. We summarize our notations in Table 1.

3.1 Linear Mapping: The Baseline Performance

As shown in the example of Fig. 1, the simplest f is the lin-
ear compression function l:

Jl ¼ lðJÞ ¼ J �minðJÞ
r

; (2)

where r ¼ maxðJÞ �minðJÞ, i.e., the span of the dynamic
range. Convolving Jl withK, we have Il as

Il ¼ lðJÞ �K ¼ ðI � mÞ
r

; (3)

where m ¼ minðJÞ �K is a constant. Il is a shifted and
scaled version of I, and therefore should not contain any
ringing effect. However, it suffers from significant contrast
loss.

For a ringing-free image I, we can define its contrast by
root mean square (RMS) as:

cðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1
ðIðiÞ � �IÞ2

s
; (4)

where n is number of pixels and �I is the average intensity
value.

Since Il is ringing free, we can compute its contrast factor z
with respect to I as zðIlÞ ¼ cðIlÞ=cðIÞ ¼ 1=r. Notice that if I
is of uniform intensity, cðIÞ ¼ cðIfÞ ¼ 0. In this singular
case, we define zðIfÞ ¼ 1, indicating no contrast lost. Notice
that r can be very large even with a moderate size K. For
example, in an extreme case from the BSDS500 [34] dataset,
a 5� 5 Gaussian kernel of s ¼ 2:5 (here we assume J can be
obtained by Wiener filter) results in r ¼ 17, i.e., the contrast
loss is significant (z ¼ 1=17). In this paper, we use Jl as the
baseline result and compare it with other tone mapping
functions.

3.2 General Tone Mapping

For a general tone mapping function, we assume it is con-
structed by composing an additional tone mapping function
f : ½0; 1� 7! ½0; 1� onto the baseline result Jl. This significantly
simplifies our analysis. For example, many classical tone
mapping functions such as Gamma curves can be directly

TABLE 1
Table of Notations

Symbol Description

I Reference sharp image
K Blur kernel
J Pre-compenstated image before tone mapping
l Linear compression function
s Our proposed “s” shaped mapping function
f General tone mapping function
Jf Tone mapped pre-compensated image (Jf ¼ fðJÞ)
If Tone mapped restored sharp image (If ¼ fðJÞ �K)
m Slope of a linear tone mapping function
r Dynamic range span
c Image contrast
z Contrast factor
H Image histogram
IRF Equivalent ringing free image
G Ringing measurement
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modeled using f . The final tone mapping function hence
is f 	 l ¼ fðlðJÞÞ ¼ fðJlÞ and we denote Jf as the pre-
compensated result and If the perceived image.

General Linear Mapping. Let us first consider the general
linear mapping with truncation:

Jf ¼
0; 0 
 Jl < � b

m

mJl þ b; � b
m 
 Jl 
 1�b

m

1; 1�b
m < Jl 
 1:

8><
>:

(5)

When no truncation occurs, we have

If ¼ ðmJl þ bÞ �K ¼ mIl þ d; (6)

where d ¼ b�K is a constant. Similar to the baseline case, If
is also ringing-free and its contrast factor is

zðIfÞ ¼ cðIfÞ
cðIÞ ¼

cðIfÞ
r � cðIlÞ ¼

m

r
; (7)

m ¼ 1 corresponds to the baseline function l. If m < 1,
cðIfÞ < cðIlÞ, i.e., we will lose more contrast. If m > 1,
cðIfÞ > cðIlÞ, we will gain contrast. However, when m > 1,
many pixels in Jf will saturate and need to be clamped to 0 or
1. As a result, although the contrast is enhanced, If will be
contaminated by clamping. We denote the general linear
mapping without truncation as fm (m is the slope) and we
will use it tomodel the contrast on ringing-corrupted images.

Non-linear Mapping and Ringing. When f is non-linear, If
will induce ringing. The cause of ringing can be explained
in the frequency domain. Assume the PSF K at a specific
frequency vn is an. Therefore, the corresponding coefficient
of K�1 at frequency vn is 1=an. Let I be a step edge function
and its corresponding Fourier coefficient at vn is y=n for
n 6¼ 0, where y is some constant. By Eqn. (1), the coefficient
of J at frequency vn is y=n � 1=an.

If f is a linear function, the coefficient of If at frequency
vn will be k � y=n � 1=an � an ¼ ky=n, where k is a constant
scaling factor introduced by f . Therefore, the spectrum of If
will be a scaled version of I, i.e., If will be contrast reduced
step edge function and there will be no ringing artifacts,
which is consistent with our conclusion in the linear case.

If f is a non-linear, Farid [35] proved using Taylor series
that the coefficients at frequency vn for Jf will be scaled
non-linearly and non-uniformly, i.e., it will no longer be a
scaled version of y=n � 1=an and convolving it with K will
not cancel out an. As a result, If will no longer be a step
edge function but a signal corrupted by non-uniformly
scaled high frequencies. Visually, it will exhibit ringing arti-
facts. Similar analysis has been carried out in [14].

Effect of Display/Projector Response Function. Eventually,
the pre-compensated image is shown on a display or projec-
tor for viewing. The emitted irradiance received by viewer
will go through a display response function. Since such
response functions are always non-linear, the final per-
ceived image by viewer will exhibit stronger ringing arti-
facts because the high-frequency components of the output
signal will be non-uniformly scaled. As a result, it is critical
to compensate the display response function before show-
ing the pre-compensated image.

In our experiments, we perform photometric calibration
for LCD display and projector using a color checkerboard.

We find correspondences between input image intensity
and output irradiance and linearize the mapping. Technical
details of this calibration process will be described in
Section 6. We apply the reverse response function to com-
pensate the non-linearity and reduce ringing artifacts in the
final output image. Experiments show that by compensat-
ing the non-linear projector response curve, the perceived
images have higher contrast and less ringing. Please note
that this procedure is designed for linear images captured
by digital cameras. To combine better viewing experience
with minimized ringing, a pre-calibrated non-linear display
response function is applied to the original sharp image
prior to our pre-compensation algorithm. (The response
function is based on the pre-calibrated quadratic equations
described in Section 6.1.)

3.3 Disambiguating Contrast from Ringing

The existence of ringing poses significant difficulty in mea-
suring contrast. Since ringing appears as oscillating patterns,
we cannot directly apply Eqn. (4) as the contrast measure.
Specifically, a low contrast image with severe ringing can
still produce large RMS contrast (Eqn. (4)). In principle, the
contrast of a gray-level image should not be modified by
ringing, since this artifact does not introduce additional
meaningful content. However, the RMS contrast will be
artificially boosted due to intensity variance. Alternative
contrast definitions such as Weber contrast or Michelson
contrast [36] that consider the minimum and maximum
luminance are not able to disambiguate actual contrast from
ringing. We are not aware of work done on measuring
contrast under ringing.

The term “contrast” characterizes a group behavior of
pixels. We consider the intensity histograms of the baseline
pre-compensated result Jl and the general tone mapped
result Jf . Our key observation here is that Jl contains ring-
ing due the Gibbs phenomenon by deconvolution. Further,
deconvolution behaves as derivatives of a natural image,
and as such, the intensity histogram HðJlÞ follows the Lap-
lacian distribution. In Fig. 2a, we randomly select 5 images
from the BSDS500 database [34] and compute their pre-
compensated images using a fixed kernel. In Fig. 2b, we fix
the image but apply 6 different kernels to pre-compensated
the image. The intensity histograms of the resulting pre-
compensated images consistently follow the Laplacian dis-
tribution. More examples are included in the supplemental
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2839115.

Next, let us consider how a tone mapping function f
transforms HðJlÞ. For the linear function fm, the offset b
shifts the histogram whereas the slope m stretches it. In the
non-linear case, we can conduct a first order approximation
to f by using the tangent line at the mode of HðJlÞ (i.e., the
most frequent intensity). This leads to a new contrast factor
measure under an arbitrary tone mapping function f : we

first compute HðJlÞ and locate mode Ĵl; next, we compute

the tangent line fm̂ on f at point Ĵl; finally, we use fm̂ to line-
arly tone map Jl to Jfm̂ .

Since fm̂ is linear, Ifm̂ ¼ Jfm̂ �K does not induce ringing.
We call Ifm̂ the “equivalent ringing free” image of If and
denote it as IRF. We then compute the contrast of IRF using
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Eqn. (4) and treat it as the contrast of If . Moreover, comput-
ing IRF has another use: we now can quantitatively measure
ringing of If as G ¼ jIf � IRFj. This is consistent with the
observation that ringing depends on both the input pre-
compensated image Jl (by which we locate the mode of
HðJlÞ) and the tone mapping function f (by which we com-
pute the tangent function at the mode). Fig. 3 shows the
complete pipeline for measuring the contrast and ringing
under an arbitrary f .

4 TONE MAPPING FUNCTION SELECTION

Our quantitative measures of contrast and ringing enables
reliable comparisons between various tone mapping func-
tions and feasible constructions of tone mapping function to
achieve specific contrast.

4.1 Contrast-Priority Tone Mapping

We first show how to construct a tone mapping function to
achieve a specific contrast. Given a desired contrast factor z,
we can directly compute the slopem of the corresponding lin-
ear mapping function using Eqn. (7) as m ¼ r � z. Since z is
expected to outperform the baseline function fl and at the
same time shouldnot exceed the contrast of the original image,
we should restrict z as 1=r < z 
 1 so that them 2 ð1; r�.

Our contrast measure analysis shows that, for a tone
mapping function f , if we want to maintain contrast m of
If , at the histogram mode Ĵl, f should 1) map Ĵl to Ĵl to pre-
serve the overall image intensity level and 2) should have
the tangent slopem at Ĵl.

Given these two conditions, we insert an anchor point
P ¼ ðĴl; ĴlÞ with tangentm. Recall that the other two anchor

points are the endpoints P� ¼ ð0; 0Þ and Pþ ¼ ð1; 1Þ. Our
goal is to construct two B�ezier curves, the lower halfB� from
P� to P and the upper half Bþ from P to Pþ, to construct f .
To do so, we introduce two more anchor points Q� and Qþ

on the tangent line at P to control the tangent at P� and Pþ.
Specifically, we can parameterizeQ� andQþ by t� and tþ:

Q� ¼ ðĴl � t� sin u; Ĵl � t� cos uÞ;
Qþ ¼ ðĴl þ tþ sin u; Ĵl þ tþ cos uÞ;

(8)

where u ¼ arctanð1=mÞ and 0 < t� 
 Ĵl= cos u and 0 <
tþ 
 ð1� ĴlÞ= cos u. As a result, P�, Q�, and P form B�ezier
curve B� and P , Qþ, and Pþ form B�ezier curve Bþ as

B�ðtÞ ¼ ð1� tÞ2P� þ 2ð1� tÞtQ� þ t2P;

BþðtÞ ¼ ð1� tÞ2P þ 2ð1� tÞtQþ þ t2Pþ;
where 0 
 t 
 1:

(9)

By adjusting t� and tþ and hence Q� and Qþ, we can
control the amount of ringing through the curvature of the
curves (Section 3.3) while maintaining the desirable con-
trast, as shown in Fig 4. We call this set of functions the
adaptive contrast-priority tone mapping (analogous to shut-
ter/aperture-priority in photography).

Notice that the upper-half B�ezier segment Bþ is convex
and the lower-half B� is concave, forming an “S” shape. We
therefore denote the special mapping function as s. Fig. 4
shows the results by using different s functions. The reason
that the S-shaped curve s achieves higher contrast factor
than the baseline mapping l can also also explained using
Jensen’s inequality: since the upper-half (the high intensity
portion) is convex, by Jensen’s inequality we have

Fig. 3. Measuring contrast and ringing under non-linear tone mapping f. (a) The sharp reference image I and kernel K; (b) The baseline pre-com-
pensated image Jl and its histogramHðJlÞ; (c) We compute the tangent line fm̂ of f at the mode ofHðJlÞ; (d) Linear tone mapping usingm produces
ringing free result IRF whereas f produces ringing-corrupted result If ; (e) The contrast of If is nearly the same as the contrast of IRF; (f) jIRF � If j
approximates the ringing in If .

Fig. 2. Histograms of pre-compensated natural images. (a) Histograms of five natural images from BSDS500 [34] pre-compensated by one invertible
kernel. (b) Histograms of one natural image pre-compensated using six different kernels. Notice that the histogram changes more dramatically over
different kernels than over different images.
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Is ¼ BþðJlÞ �K > BþðJl �KÞ > Jl �K ¼ Il: (10)

This implies that the brightest pixel in Is will be brighter
than the one in the baseline result Il. Similarly, since the
lower half is concave, the darkest pixel in Is will be dimmer
than the one in Il. Therefore, the overall dynamic range of
final outputs using swill be greater than the one using l.

Next, let us compare s with the classical power mapping
function. Recall that the power function, i.e., gðxÞ ¼ xg , can
be either convex when g > 1 (denoted as gþ) or concave
when g < 0 (denoted as g�) where both types can be used
as the tone mapping function. For gþ, similar conclusion of
Eqn. (10) holds, i.e., the brightest pixel in Igþ will be brighter
than the one in Il. However, since gþ is convex everywhere,
the dimmest pixel will also be brighter than the baseline
result. Therefore, the overall dynamic range is only margin-
ally expanded. Similar arguments apply to g� which uni-
formly brings down the intensity for all pixels. Our s
function, in contrast, can be viewed as combining the
advantage of high intensity potion of gþ and low intensity
portion of g� and hence outperforms both.

4.2 Trading Off Between Contrast and Ringing

Recall that the linear mapping fm produces ringing free
result IRF. Therefore, we can find the optimal s function

that is close to IRF. Specifically, we minimize the following
objective function:

Oðt�; tþ;mÞ ¼ jjIRFðmÞ � Isðt�; tþ;mÞjj þ a
1

m
: (11)

The first term measures the ringing in terms of the differ-
ent between Is and its equivalent ringing-free IRF. The sec-
ond term 1=m measures the contrast, i.e., the larger m
(1 < m 
 r), the higher the contrast. Finally, a is the param-
eter that trades off between ringing and contrast. A larger a
prefers more contrast (larger m) whereas a smaller a prefers
ringing-free (the curve will be closer to being linear). In
Section 6.2, we conduct a study to choose preferred a for
specific types of scenes.

For a given a, we can use the Levenberg-Marquardt (LM)
algorithm [37] to minimize the objective function. Specifi-
cally, we initialize m to its maximum, i.e., m ¼ r as initial
value and find the t� and tþ that produce the least ringing
by minimizing the first term. We then use the resulting t�

and tþ as initial values to optimizem. We apply several iter-
ations to obtain the satisfactory results (the optimization
converges within seven iterations in most of our experi-
ments). Fig. 5 shows the optimized results of different a.

5 CONTENT AWARE PRE-COMPENSATION

The human vision system deems some regions in a scene to
be more important (i.e., more salient) than others. Based on
this observation, we propose to prioritize the contrast pres-
ervation in salient regions in order to improve the quality of
perceived pre-compensation image. Since visual saliency is
determined by image content, we call our algorithm content
aware pre-compensation. In this section, we describe our
algorithm in details.

Given sharp reference image I, we first detect the salient
regions that may attract more attention. Saliency detection
[38] is a well studied area in computer vision; it has been
used in applications such as object detection and recogni-
tion [39], visual tracking [40], and content-based image seg-
mentation [41]. Many computational saliency models have
been proposed. A comprehensive survey can be found in
[42]. In our work, we adopt the graph-based visual saliency
(GBVS) detection algorithm [43], [44] to find salient visual
content in the sharp reference image. This algorithm simu-
lates human eye fixation with good fidelity.

We then use the saliency mask M to separate the refer-
ence image I into salient image (foreground) IM and non-

Fig. 4. Left: The construction of an s function. Right: Tone mapping the pre-compensated result using different s functions: (a) The original image and
its defocused projection without image pre-compensation; (b) & (c) are tone mapped and final perceived results by applying different s functions.

Fig. 5. Balance between contrast and ringing. The top two rows show the
reference image and the blurred result if we do not pre-compensate the
input. The bottom three rows show the results under different tone map-
ping functions. Smaller a leads to more contrast loss but incurs minimal
ringing. Larger a enhances the contrast but incurs more ringing.
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salient (background) image I �M , where IM ¼ I �M and
I �M ¼ I � �M ( �M is the inverse mask: �M ¼ 1�M). We apply
a Gaussian filter on the original saliency mask in order to
achieve smooth transition from foreground to background;
for a 1200� 900 image, we use a 51� 51 Gaussian filter
with s ¼ 8. We pre-compensate the salient image IM and
use its contrast loss to guide the optimization of the adap-
tive contrast-priority tone mapping function in order to pre-
serve the contrast of salient regions at best. In particular, the
pre-compensated salient image is computed by applying
the inverse blur kernel: JM ¼ IM �K�1.

Since JM contains only salient content, we then combine
JM with the background image to obtain an initial estima-
tion of pre-compensated image Ĵ ¼ JM þ IM̂ . Note that
while the dynamic range of Ĵ exceeds the limit of ½0; 1� due
to deconvolution, the range is dominated by the salient
image. Comparing the na€ıve approach that treat the entire
image equally, our saliency-based approach eliminates the
contrast loss caused by pre-compensating the background
image and hence better preserve the contrast of salient
image content.

We first use the baseline mapping function l to linearly
compress the range of Ĵ to ½0; 1�. The linearly compressed
pre-compensated image is computed as Ĵl ¼ ðĴ �minðĴÞÞ=
ðmaxðĴÞ �minðĴÞÞ, and it suffers from severe contrast loss.
Next, our goal is to find the optimal contrast-priority tone
mapping function in order to enhance the contrast. As
described in Section 4.1, our contrast-priority tone mapping
function or the S-shaped curve is able to achieve a specific
contrast. Therefore, we use best possible contrast of the pre-
compensated image to initialize an equivalent ringing-free
image IRF . In particular, the initial slope of the correspond-
ing linear mapping function is computed as m0 ¼ r � z,
where r ¼ maxðĴÞ �minðĴÞ is the dynamic range of Ĵ and
we use the maximum contrast factor (z ¼ 1).

Then we iteratively update the two sets of parameters in
the contrast-priority tone mapping function ðt�; tþÞ and m
to balance between contrast and ringing. The optimization
processed is described in Section 4.2 . As a result, we obtain
an optimized contrast-priority tone mapping function s
based on the contrast of the pre-compensated salient image.

Finally, we apply the optimized s function onto Ĵl to
compute the pre-compensated image that best preserves the
contrast of salient image content J ¼ sðĴlÞ. The complete
process of our content aware pre-compensation is summa-
rized in Algorithm 1.

Algorithm 1. Content Aware Image Pre-Compensation

Input: Reference Sharp image I & blur kernelK
Output: Pre-compensated image J
Compute a saliency maskM from I �M ;
Compute the inverse mask: �M ¼ 1�M;
Separate salient image IM and background image I �M ,
where IM ¼ I �M and I �M ¼ I � �S;
Pre-compensate salient image JM ¼ IM �K�1;
Composite an initial pre-compensated image Ĵ ¼ JM þ I �M ;
Compute the dynamic range of Ĵ : r ¼ maxðĴÞ �minðĴÞ;
Linear compress Ĵ : Ĵl ¼ lðĴÞ;
Initialize an equivalent ringing-free image IRF ðm0Þ:
m0  r
IRF ðm0Þ  ðm0Ĵ þ bÞ �K;
Iteratively optimize the adaptive contrast-priority tone
mapping function s until convergence or reaching the
maximum iteration.
while k < itermax and Oðt�; tþ;mÞ < � do
Fixmk, solve

mint�
kþ1;t

þ
kþ1
jjIRFðmkÞ � Isðt�kþ1; tþkþ1;mkÞjj;

Fix t�kþ1; t
þ
kþ1, solveminmkþ1 jjIRFðmkþ1Þ

�Isðt�kþ1; tþkþ1;mkþ1Þjj þ a 1
mkþ1 ;

k ¼ kþ 1;
end
Compute and output the final pre-compensated image
J ¼ sðĴlÞ

6 EXPERIMENTS

In this section, we validate our content aware pre-
compensation algorithm on two applications: projector
defocus compensation and visual acuity improvement.

6.1 Projection Defocus Compensation

A projector acts as a camera with an ultra-wide aperture
and therefore can only focus at a fixed depth. All projectors
suffer from certain blurriness due to imperfect optics or
non-planar projection surface. Our algorithm is the first that
is able to compensate such blurriness by actively balancing
the image contrast and ringing artifacts. In addition, our
algorithm prioritizes the contrast of salient visual content.

To validate our approach, we use an Epson Powerlite
3LCD projector to display images on a projection screen; we
adjust the projector to be slightly out of focus. We mount a
coded aperture (as shown in Fig. 7) for generating invertible
PSFs. To estimate the PSFs or blur kernels for image pre-
compensation, we project a 36� 64 dot array and capture
its image. To suppress sensor noise, we capture ten images
and take the average. The defocus patterns of the dots are
used as blur kernels. To account for chromatic aberration,
we consider the PSFs for each color channel separately. On
the acquisition side, we use a Canon 60D camera to capture
the projected images to simulate the perceived image by a
human viewer. We focus the camera on the projection
screen and assume defocus is solely caused by the projector.
Our experimental setup is shown in Fig. 6.

Projector Response Function Calibration. As discussed in
Section 3.2, the non-linearity of projector response function
causes ringing artifacts. In order to compensate for the
response function, we calibrate the projector response

Fig. 6. Experimental setup on projector defocus compensation.
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function and apply the inverse function on the displaying
image for compensation. Specifically, we project color
checkers to establish correspondences between input inten-
sity and output irradiance. In order to eliminate the effect of
gamma correction (power function with g as the exponent),
we set g ¼ 1 in the projector settings.

Since the projected color field is non-uniform, we calibrate
the response function based on local windows. Specifically,
we project each color in the color checkerboard one by one in
full resolution. We segment the projected image into small
non-overlapping windows of 100� 100 (in pixels) and esti-
mate the response function per window. For eachwindow,we
assume the color is uniform and average the intensities within
the window to reduce noise. Our non-linear response function
per window consists of three per-channel quadratic equations
fRo;Go;Bog ¼ FfRo;Go;BogðRi;Gi;BiÞ; for the red channel, it is

FRoðRi;Gi;BiÞ ¼ a1R
2
i þ a2G

2
i þ a3B

2
i þ a4RiBi

þ a5RiGi þ a6BiGi þ a7Ri þ a8Gi þ a9Bi þ a10;
(12)

where Ro is the observed red channel intensity, Ri;Gi; Bi

are the corresponding ground truth, and fa1; . . . ; a10g are
the quadratic equation coefficients. FBo and FGo are simi-
larly defined with different coefficients. To determine these
quadratic equations, we estimate their coefficients by solv-
ing a large over-determined linear system. Specifically, for
each non-linear response, we need to solve 30 coefficients
(i.e., 10 for each per-channel quadratic equation) and 72
equations can be constructed by projecting 24 colors in the
standard color checkerboard.

Although the projector has a resolution of 1920� 1080,
we use the center area of 1200� 900 to avoid vignetting arti-
facts at the image periphery caused by our coded aperture.
As a result, we obtain 108 non-linear responses (one for
each window) and we apply the inverse response functions
on the pre-compensated image to reduce the ringing arti-
facts caused by the non-linear functions.

Evaluation. We compare the results of our proposed
content-aware image pre-compensation algorithm with
those of competing state-of-the-art techniques. Given a
sharp reference I, we first apply the saliency detection algo-
rithm described in [43], [44] to separate salient image

content and background. Then, we apply Wiener filter on
the salient image and combine with the background image
to obtain an initial pre-compensated image J , where the
dynamic range of J exceeds the display limit of ½0; 1�. We
then linearly compress J to the range of ½0; 1�. To preserve
the contrast of salient content, we use the contrast loss
of the pre-compensated salient image to initialize an equiva-
lent ringing-free image and apply our optimization frame-
work to find the optimal contrast-priority tone mapping
curve. In our experiments, we set a ¼ 1� 103. We run our
experiments on a laptop computer with Intel Core i7 GPU
and 8 GB memory. The total running time is around 0.7s
(for images with size 1200� 900) using Matlab.

Fig. 7 shows results for two representative images.
Directly using the linearly compressed pre-compensation
produces images with significant reduction in contrast.
Results using steepest descent [10] have enhanced contrast,
but at the cost of excessive blur. Results produced by our
technique appear much sharper with less ringing. This is
because our algorithm can handle large blur kernels while
[10] only works well on small ones.

In our approach, we can use a larger a to reduce ringing
at the cost of losing contrast or a smaller a to enhance con-
trast at the cost incurring more ringing. In text image result,
the texts are hardly discernible in the blurred image, while
our approach is able to restore the text with moderate con-
trast. More results on the natural images are shown in
Fig. 13. Here, we can see that our algorithm significantly
enhances the image contrast compared to the linear tone
mapped results while minimizing ringing. We also compare
our result with simple gamma correction (Fig. 8). The
gamma correction function is applied on the linear com-
pressed pre-compensation image. As can be seen, correction
is not effective in enhancing contrast. This is the because it
brings out either bright or dark details while the histogram
of pre-compensated image is centered around the mean
intensity value. Gamma correction is not effective in stretch-
ing the dynamic range.

In Fig. 14, we demonstrate the effectiveness of the
projector response function correction. We show the pre-
compensation results with and without response function
correction. As shown in the results, the pre-compensation

Fig. 7. Projector defocus compensation results. From left to right: reference sharp images; blurred images (without pre-compensation) captured by a
camera; pre-compensation results by Zhang and Nayar’s algorithm [10], which preserves the contrast but exhibits strong ringing; pre-compensation
results by linear tone mapping, which avoids ringing but loses contrast; our pre-compensation results enhance the contrast with only slight ringing.
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results with projector response function correction has less
ringing and higher contrast. As shown in the close-up
views, text and image details appear sharper.

To quantitatively evaluate the results, we use CIE76 DE
metric to measure the color difference between the per-
ceived pre-compensation image (captured by an in-focus
camera) and the reference sharp image. We first transform
the color in RGB color into CIELAB space. Given two coor-
dinate in CIELAB space, ðL1; a1; b1Þ and ðL2; a2; b2Þ, the DE
metric is computed as the euclidean distance between the
coordinates:

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 � L1Þ2 þ ða2 � a1Þ2 þ ðb2 � b1Þ2

q
: (13)

Therefore, the lower the value, the closer the colors of the
two images appear. The pre-compensation results with our
projector response correction have lower DE.

We also compare results of our approachwith those of our
previous algorithm proposed in [17] (Fig. 15). In our previ-
ous algorithm, visual saliency is not considered, and the
whole image is pre-compensated in one pass. Qualitatively,
our results have higher contrast and less ringing, especially
on the sharp edges (such as the wings of the parrot and drag-
onfly). Although our algorithm allow more blurriness in the
background, the effect is not noticeable since the back-
grounds are already out-of-focus in the reference image.
Quantitatively, we compare the results by DE (color differ-
ence between the simulated perceived image and the origi-
nal sharp image) and the dynamic range span r (r ¼
maxðIÞ �minðIÞ) of the pre-compensated image. Notice
that according to Eqn. (3), the smaller r is, the less contrast
loss the final perceived image would suffer. Results pro-
duced by our solution have smaller values of both DE and r,

which means that our simulated perceived images are closer
to the sharp reference image and have higher contrast.

We further perform experiments to evaluate the robust-
ness of our algorithm to noise in the blur kernel. Specifi-
cally, we add different amounts of synthetic Gaussian noise
(1 percent, 5 percent, and 10 percent of the dynamic range
[0,255]) to the ground truth PSF and use the noisy PSFs as
input to our algorithm for deconvolution. We use images in
the BSDS500 dataset [34] as the input sharp reference
images and use the PSFs with various noise levels for pre-
compensation. The structural similarity (SSIM) index [45] is
used to measure quality of the pre-compensation images
with the original sharp images as reference. The SSIM val-
ues averaged over the entire dataset is shown in Table 2.
Visual results for three representative images are shown in
Fig. 9. As the PSF noise is increased, SSIM decreases, with
the pre-compsation images having more ringing artifacts.
However, even with 10 percent noise added, the visual
quality of the pre-compensation image is still reasonable.

6.2 Improving Visual Acuity

There is an emerging interest on developing tailored dis-
plays for improving visual acuity, e.g., to allow a person
with myopia to read without wearing corrective lenses.
Recall that both myopia and hyperopia can be viewed as
special defocus blurs. We show that contrast can be signifi-
cantly enhanced by maneuvering the tone mapping process
and our technique is complementary to the computational
display approaches. In this section, we demonstrate the
effectiveness of our pre-compensation algorithm in improv-
ing visual acuity.

We emulate the PSFs of myopia/hyperopia using
Zernike polynomials [46] which are widely adopted in oph-
thalmology. The kernel in its radial form is defined as

Rm
n ðrÞ ¼

Xðn�mÞ=2
i¼0

ð�1Þiðn� iÞ!
i!ð12 ðnþmÞ � iÞ!ð12 ðn�mÞ � iÞ! r

n�2i; (14)

where 0 
 m 
 n and n�m is even. In our experiments,
we only consider up to the second order (n 
 2) terms

TABLE 2
Effect of PSF Noise on SSIM Quality Metric

PSF Noise 1% 5% 10%

SSIM 0.8978 0.8394 0.7560

SSIM is averaged over 500 images taken from the BSDS500 dataset [34].

Fig. 8. Comparison with simple gamma correction. (a) Linear tone map-
ping result; (b) our pre-compensation result; (c) gamma correction result
with g ¼ 1=2:2; (d) gamma correction result with g ¼ 1:8.

Fig. 9. Effect of PSF noise. Left: original sharp images and the ground
truth PSF. Right: Pre-compensation images (with close-ups) and their
corresponding PSFs with noise (which increases from left to right,
namely, 1 percent, 5 percent, and 10 percent). Notice that while the qual-
ity degrades with noise, the visual quality is still reasonable despite the
noticeable ringing.
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which can sufficiently model defocus and astigmia. Fig. 12b
shows several examples of our PSFs that correspond to dif-
ferent levels of vision degradation.

We emulate the effect of myopia by convolving sharp text
images with the PSFs and display the results on a regular
LCD display Viewsonic VA2448 with contrast ratio 1000:1.
We then use our algorithm to find the pre-compensated text
images that, after being blurred by the myopia PSFs, will
appear readable to the user. Compared with the projector
defocus case where the reference image I is generally a natu-
ral image with rich color and contrast, the reference images
for this application are grayscale or even black/white to rep-
resent typical texts (e.g., displayed on Kindle). Compared
with linear tonemapping, our technique significantly enhan-
ces the contrast as shown in Fig. 10.

User Studies. Finally, we perform a user study to test the
effectiveness of our approach. We have recruited 45 subjects
(34 male, 11 female), with an average age of 23. Subjects per-
form the test with corrected vision and the pre-compensation
results are shown on a LCD display after being blurred by
their myopia PSFs. We select 10 different myopia PSFs
and 20 different images. The ten images used are shown in
Fig. 11. For each user, we perform two sets of experiments. In
the first experiment, we ask the users to compare the pre-
compensation results of our approach and Ji et al. [17], and
pick one that is more visually preferable. The goal of this
experiment is to demonstrate the effectiveness of using
saliency to enhance contrast. The user preference results are
shown in Fig. 11; for most images, more users prefer the
results of our new saliency-based pre-compensation algo-
rithm. One exception is Test Image 17 (this image is shown in

Fig. 11). For this image, slightly more users pick the result of
Ji et al. [17]. This is probably due the saliency detection result
is not desirable (saliency masks are shown in our supple-
mental material, available online).

In the second experiment, we study the effect of our
contrast/ringing control factor a (see Eqn. (11)). a is the
parameter that trades between ringing and contrast. A larger
a prefers higher contrast whereas a smaller a tolerates more
ringing-free. We have developed an interface to allow the
user to dynamically change a and view the pre-compensation
results. The users are asked to adjust a under two scenarios:
1) given a fixed blur kernel (PSF), adjust a for different text
images; 2) give a fixed test image, adjust a for different PSFs.
For every PSF and test image pair, each user tunes to his/her
favorite a that produces themost agreeable result. Our results
are shown in Fig. 12 where (a) and (b) are the variations of a
with respect to the text images and PSFs respectively. This
study indicates that the preferable a is relatively consistent
across users, although it changes with respect to the image
content and the PSF.

Fig. 10. Emulation of myopia by displaying blurred text. Left to right:
Blurred text using the myopia kernel, result using pre-compensated
image under linear tone mapping, result using our approach.

Fig. 11. A user study for evaluating our system. We show ten samples
out of our twenty test images. In our circle plot, each radius corresponds
to a test image. The blue point on each radius refers to the number of
users who pick the pre-compensation result of our approach and the
orange point refers to the number of users who pick the result of Ji et al.
[17]. We can see that for most images, more users prefer the results of
our approach over those of Ji et al.[17].

Fig. 12. User preference on a. (a) For a fixed kernel, we plot the range of
preferred a across users on different test images. (b) For a fixed test
image, we plot the range of preferred a across the users on different
kernels. The red bar corresponds to the mean a.
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Fig. 13. Additional Projector defocus compensation results. From left to right: reference sharp images; blurred images (without pre-compensation)
captured by a focused camera; pre-compensation results by linear tone mapping; our pre-compensation results.

Fig. 14. We compare the pre-compensation results with and without projector response function correction. From left to right: Reference sharp
images; pre-compensation results with projector correction; pre-compensation results without projector correction; close-up views in the pre-com-
pensated images. The CIE76 DE metric is used to measure the color difference; the smaller DE is, the better.
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7 CONCLUSIONS AND FUTURE WORK

We present a new tone mapping approach for image pre-
compensation that effectively trades off between contrast
and ringing. We also provide in-depth analysis on the
causes of dynamic range burst and ringing. Furthermore,
we develop a technique to measure contrast and ringing on
images in image pre-compensation. Based on our analysis,
we design a contrast-preserving tone mapping function. To
enhance contrast, we use the contrast loss in salient regions
to guide the search of optimal contrast-preserving tone
mapping function. We demonstrate our approach on two
important applications: projector defocus compensation
and corrective lens free visual enhancement. Compared
with the state-of-the-art, our approach not only greatly
improves the contrast but also provides an effective inter-
face to trade between contrast and ringing.

Although our user study in visual acuity enhancement
illustrates the effectiveness of our solution, more can be
done. More specifically, the next step would be to measure
the actual myopia/hyperopia PSFs of each individual user,
e.g., by using the tailored display [31] and use the ground
truth PSFs to estimate the tone mapping function. In addi-
tion, our Bezier curve model is used to replicate the contrast
at the most frequent intensity only. If the histogram of the
pre-compensated image has multiple peaks, we can poten-
tially insert multiple anchor points and construct a more
complex tone-mapping function. Finally, the problem of
contrast preservation can be studied from the perspective of
gradients [47]. Our tone mapping function is global and in
the future, we plan to explore integrating our contrast
model with gradient histogram and gradient domain fusion
for handling local contrast enhancement.
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